Tamil Nadu Board of Secondary EducationSSLC (English Medium) (5 to 8) Class 7

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C). radius (r) diameter (d) Circumference (C) 24 m - Mathematics

Advertisements
Advertisements
Sum

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
  24 m  
Advertisements

Solution

Given: diameter d = 24 m

radius r = `"d"/2`

= `24/2`

= 12 m

Circumference C = 2πr units

= `2 xx 22/7 xx 12`

= `528/7`

= 75.4 m

Tabulating the results

radius (r) diameter (d) Circumference (C)
12 m 24 m 75.42 m
  Is there an error in this question or solution?
Chapter 2: Measurements - Exercise 2.1 [Page 27]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 7th Mathematics Term 2 Answers Guide
Chapter 2 Measurements
Exercise 2.1 | Q 1. (iii) | Page 27

RELATED QUESTIONS

In Fig. 8, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects circle at E. If AB is a tangent to the circle at E, find the length of AB, where TP and TQ are two tangents to the circle.


Points A(–1, y) and B(5, 7) lie on a circle with centre O(2, –3y). Find the values of y. Hence find the radius of the circle.


In fig., O is the centre of the circle, PA and PB are tangent segments. Show that the quadrilateral AOBP is cyclic.


In fig., circles C(O, r) and C(O’, r/2) touch internally at a point A and AB is a chord of the circle C (O, r) intersecting C(O’, r/2) at C, Prove that AC = CB.


Fill in the blanks:

Segment of a circle is the region between an arc and __________ of the circle.


Write True or False. Give reason for your answer. 

Sector is the region between the chord and its corresponding arc.


If AB, AC, PQ are tangents in Fig. and AB = 5cm find the perimeter of ΔAPQ.


true or false

Sector is the region between the chord and its corresponding arc.


In the below fig. O is the centre of the circle. If ∠APB = 50°, find ∠AOB and ∠OAB.


Two parallel chords are drawn in a circle of diameter 30.0 cm. The length of one chord is 24.0 cm and the distance between the two chords is 21.0 cm; find the length of another chord.


In the given figure, if arc AB = arc CD, then prove that the quadrilateral ABCD is an isosceles– trapezium (O is the centre of the circle).


In the given figure ABC is an isosceles triangle and O is the centre of its circumcircle. Prove that AP bisects angle BPC .


In the given figure, a circle touches all the four sides of a quadrilateral ABCD whose three sides are AB = 6cm, BC=7cm and CD=4 cm. Find AD.


In the given figure, the chord AB of the larger of the two concentric circles, with center O, touches the smaller circle at C. Prove that AC = CB.


In the given figure, PA and PB are the tangent segemtns to a circle with centre O. Show that he points A, O, B and P are concyclic.


In the given figure, O is the centre of the two concentric circles of radii 4 cm and 6cm respectively. AP and PB are tangents to the outer and inner circle respectively. If PA = 10cm, find the length of PB up to one place of the decimal.


PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the lengths of TP and TQ.


In the given figure, ΔABC is an equilateral triangle. Find mBEC


A chord of length 14 cm is at  a distance of 6 cm from the centre of a circle. The length of another chord at a distance of 2 cm from the centre of the circle is


One chord of a circle is known to be 10 cm. The radius of this circle must be


In the given figure, if ∠ABC = 45°, then ∠AOC =


In the given figure, chords AD and BC intersect each other at right angles at a point P. If ∠DAB = 35°, then 


The length of three concesutive sides of a quadrilateral circumscribing a circle are 4 cm, 5 cm, and 7 cm respectively. Determine the length of the fourth side.


AB is a chord of a circle with centre O , AOC  is a diameter and AT is the tangent at A as shown in Fig . 10.70. Prove that \[\angle\]BAT = \[\angle\] ACB


Equal circles with centres O and O' touch each other at X. OO' produced to meet a circle with centre O', at A. AC is a tangent to the circle whose centre is O. O'D is perpendicular to AC. Find the value of\[\frac{DO'}{CO}\]


In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.


Choose correct alternative answer and fill in the blank. 

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........


Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.


The point of concurrence of all angle bisectors of a triangle is called the ______.


The circle which passes through all the vertices of a triangle is called ______.


Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.


The length of the longest chord of the circle with radius 2.9 cm is ______.


Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.


The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.


Find the length of the chord of a circle in the following when: 

Radius is 6.5 cm and the distance from the centre is 2.5 cm 


AB and CD are two equal chords of a drde intersecting at Pas shown in fig. P is joined to O , the centre of the cirde. Prove that OP bisects  ∠ CPB. 


Find the diameter of the circle if the length of a chord is 3.2 cm and itd distance from the centre is 1.2 cm.


If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.



In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.


In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –
(1) m(arc PR)
(2) m(arc QS)
(3) m(arc QSR)  


In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof. 


The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,
find the radius of the circle.


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.
Prove that:
( i ) ΔOPA ≅ ΔOQC 
( ii ) ΔBPC ≅ ΔBQA


Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?


Suppose you are given a circle. Describe a method by which you can find the center of this circle.


In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle.  seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:
a. Draw ray CE. It intersects the circle at D.
b. Show that CE = ED.
c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof. 


ABC is a right triangle in which ∠B = 90°.  If AB = 8 cm and BC = 6 cm, find the diameter of the circle inscribed in the triangle.


In Fig., chords AB and CD of the circle intersect at O. AO = 5 cm, BO = 3 cm and CO = 2.5 cm. Determine the length of DO.


If O is the centre of the circle, find the value of x in each of the following figures


If O is the centre of the circle, find the value of x in each of the following figures


Use the figure given below to fill in the blank:

Diameter of a circle is ______.


Use the figure given below to fill in the blank:

Tangent to a circle is _______.


Use the figure given below to fill in the blank:

Diameter = 2 x ________


Use the figure given below to fill in the blank:

AB is a ______ of the circle.


Draw a circle of radius 4.8 cm and mark its center as P.
(i) Draw radii PA and PB such that ∠APB = 45°.
(ii) Shade the major sector of the circle


Construct a triangle ABC with AB = 5 cm, ∠B = 60° and BC = 6. 4 cm. Draw the incircle of the triangle ABC.


Construct a triangle PQR in which, PQ = QR = RP = 5.7 cm. Draw the incircle of the triangle and measure its radius.


Draw a circle of diameter 7 cm. Draw two radii of this circle such that the angle between these radii is 90°. Shade the minor sector obtained. Write a special name for this sector.


State, if the following statement is true or false:

The longest chord of a circle is its diameter.


State, if the following statement is true or false:

Every diameter bisects a circle and each part of the circle so obtained is a semi-circle.


If the radius of a circle is 5 cm, what will its diameter be?


Draw circle with the radii given below.

2 cm


Draw circle with the radii given below.

3 cm


Draw a circle with the radii given below.

4 cm


Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.


In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram Points in the interior of the circle Points in the exterior of the circle Points on the circle
     

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre


The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle


Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA


A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord


In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?


Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord


A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is


In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is


AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is


The ratio between the circumference and diameter of any circle is _______


A line segment which joins any two points on a circle is a ___________


The longest chord of a circle is __________


The radius of a circle of diameter 24 cm is _______


A part of circumference of a circle is called as _______


Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
15 cm    

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
    1760 cm

All the radii of a circle are _______________


The ______________ is the longest chord of a circle


A line segment joining any point on the circle to its center is called the _____________ of the circle


A line segment with its end points on the circle is called a ______________


Twice the radius is ________________


Find the diameter of the circle

Radius = 10 cm


Find the diameter of the circle

Radius = 8 cm


Find the diameter of the circle

Radius = 6 cm


Find the radius of the circle

Diameter = 30 cm


Find the radius of the circle

Diameter = 76 cm


A, B, C are any points on the circle with centre O. If m(arc BC) = 110° and m(arc AB) = 125°, find measure arc AC.


In the adjoining figure, seg DE is the chord of the circle with center C. seg CF⊥ seg DE and DE = 16 cm, then find the length of DF?


If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc Name of circular arc Measure of circular arc
Minor arc    
Major arc    

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS) 

(iii) m(arc QSR)


Given: A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

To prove: 2r = a + b – c


In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle


In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.


In the figure, a circle with center P touches the semicircle at points Q and C having center O. If diameter AB = 10, AC = 6, then find the radius x of the smaller circle.


Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.


C(O, r1) and C(O, r2) are two concentric circles with r1 > r2 AB is a chord of C(O, r1) touching C(O, r2) at C then ______


In the following figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ, then ∠RQS.

 


In a right triangle ABC in which ∠B = 90°, a circle is drawn with AB as diameter intersecting the hypotenuse AC and P. Prove that the tangent to the circle at P bisects BC.


Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.


In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.


From the figure, identify a diameter.

 


From the figure, identify a chord.


From the figure, identify two points in the interior.


From the figure, identify a point in the exterior.


Is every diameter of a circle also a chord?


Is every chord of a circle also a diameter?


Draw any circle and mark

  1. it's centre
  2. a radius
  3. a diameter
  4. a sector
  5. a segment
  6. a point in its interior
  7. a point in its exterior
  8. an arc

Say true or false:

Two diameters of a circle will necessarily intersect.


Say true or false:

The centre of a circle is always in its interior.


A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.


If radius of a circle is 5 cm, then find the length of longest chord of a circle.


AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

  1. Draw the figure using the given information.
  2. Find the measures of ∠CAT and ∠ABC with reasons.
  3. Whether ∠CAT and ∠ABC are congruent? Justify your answer.

Share
Notifications



      Forgot password?
Use app×