Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the linear inequalities for which the shaded region in the given figure is the solution set.
Advertisement Remove all ads
Solution
- Consider 2x + 3y = 3. We observe that the shaded region and the origin lie on opposite side of this line and (0, 0) satisfies 2x + 3y ≤ 3. Therefore, we must have 2x + 3y ≥ 3 as linear inequality corresponding to the line 2x + 3y = 3.
- Consider 3x + 4y = 18. We observe that the shaded region and the origin lie on the same side of this line and (0, 0) satisfies 3x + 4y ≤ 18. Therefore, 3x + 4y ≤ 18 is the linear inequality corresponding to the line 3x + 4y = 18.
- Consider –7x + 4y = 14. It is clear from the figure that the shaded region and the origin lie on the same side of this line and (0, 0) satisfies the inequality –7x + 4y ≤ 14. Therefore, –7x + 4y ≤ 14 is the inequality corresponding to the line –7x + 4y = 14.
- Consider x – 6y = 3. It may be noted that the shaded portion and origin lie on the same side of this line and (0, 0) satisfies x – 6y ≤ 3. Therefore, x – 6y ≤ 3 is the inequality corresponding to the line x – 6y = 3.
- Also the shaded region lies in the first quadrant only. Therefore, x ≥ 0, y ≥ 0. Hence, in view of (i), (ii), (iii), (iv) and (v) above, the linear inequalities corresponding to the given solution set are: 2x + 3y ≥ 3, 3x + 4y ≤ 18 –7x + 4y ≤14, x – 6y ≤ 3, x ≥ 0, y ≥ 0.
Concept: Solution of System of Linear Inequalities in Two Variables
Is there an error in this question or solution?