Maharashtra State BoardHSC Science (General) 11th
Advertisement Remove all ads

Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0. - Mathematics and Statistics

Sum

Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.

Advertisement Remove all ads

Solution

We know that the equations of tangents with slope m to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 are

y = `"m"x ± sqrt("a"^2"m"^2 + "b"^2)`   ...(1)

The equation of the ellipse is x2 + 4y2 = 9

∴ `x^2/9 + y^2/((9/4)` = 1

Comparmg this with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 9, b2 = `9/4`

Slope of 2x + 3y – 5 = 0 is `-2/3`

The required tangent is parallel to it

∴ its slope = m = `-2/3`

Using (1), the required equations of tangents are

y = `-(2x)/3 ± sqrt(9 xx 4/9 + 9/4)`

∴ y = `-(2x)/3 ± sqrt(25/4)`

∴ y = `-(2x)/3 ± 5/2`

∴ 6y = – 4x ± 15

∴ 4x + 6y = ± 15

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×