Tamil Nadu Board of Secondary EducationHSC Arts Class 11

Find the derivatives of the following functions using first principle. f(x) = – 4x + 7 - Mathematics

Advertisements
Advertisements
Sum

Find the derivatives of the following functions using first principle.

f(x) = – 4x + 7

Advertisements

Solution

f(x + Δx) = – 4(x + Δx) + 7

f(x + Δx) – f(x) = [– 4(x + Δx) + 7] – [– 4x + 7]

f(x + Δx) – f(x) = [– 4(x + Δx) + 7] + 4x – 7

f(x + Δx) – f(x) = – 4 Δx

`(f(x + Deltax) - f(x))/(Deltax) = - 4 (Deltax)/(Deltax)`

`lim_(Deltax -> 0) (f(x + Deltax) - f(x))/(Deltax) = lim_(Deltax -> 0) - 4`

`f"'"(x)` = – 4

Concept: Differentiability and Continuity
  Is there an error in this question or solution?
Chapter 10: Differential Calculus - Differentiability and Methods of Differentiation - Exercise 10.1 [Page 147]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 11th Mathematics Volume 1 and 2 Answers Guide
Chapter 10 Differential Calculus - Differentiability and Methods of Differentiation
Exercise 10.1 | Q 1. (ii) | Page 147

RELATED QUESTIONS

Find the derivatives of the following functions using first principle.

f(x) = 6


Find the derivatives of the following functions using first principle.

f(x) = – x2 + 2


Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = |x - 1|`


Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = sqrt(1 - x^2)`


Determine whether the following function is differentiable at the indicated values.

f(x) = |x2 – 1| at x = 1


Determine whether the following function is differentiable at the indicated values.

f(x) = |x| + |x – 1| at x = 0, 1


Determine whether the following function is differentiable at the indicated values.

f(x) = sin |x| at x = 0


Show that the following functions are not differentiable at the indicated value of x.

`f(x) = {{:(3x",", x < 0),(-4x",", x ≥ 0):}` , x = 0


The graph of f is shown below. State with reasons that x values (the numbers), at which f is not differentiable.


If f(x) = |x + 100| + x2, test whether f’(–100) exists.


Examine the differentiability of functions in R by drawing the diagram

|sin x|


Choose the correct alternative:

If f(x) = x2 – 3x, then the points at which f(x) = f’(x) are


Choose the correct alternative:

If y = mx + c and f(0) = f’(0) = 1, then f(2) is


Choose the correct alternative:

If pv = 81, then `"dp"/"dv"` at v = 9 is


Choose the correct alternative:

If f(x) = `{{:(x + 1,  "when"   x < 2),(2x - 1,  "when"  x ≥ 2):}` , then f'(2) is


Choose the correct alternative:

If g(x) = (x2 + 2x + 1) f(x) and f(0) = 5 and `lim_(x -> 0) (f(x) - 5)/x` = 4, then g'(0) is


Choose the correct alternative:

If f(x) = `{{:(x + 2, - 1 < x < 3),(5, x = 3),(8 - x, x > 3):}` , then at x = 3, f'(x) is


Share
Notifications



      Forgot password?
Use app×