Find the complex number satisfying the equation z+2|(z+1)|+i = 0. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.

Advertisement Remove all ads

Solution

Given that: z + `sqrt(2) |(z + 1)| + i` = 0

Let z = x + yi

∴ `(x + yi) + sqrt(2)|(x + yi + 1)| + i` = 0

⇒ `x + (y + 1)i + sqrt(2)|(x + 1) + yi|` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt((x + 1)^2 + y^2)` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0 + 0i

⇒ `x + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0, y + 1 = 0

⇒ x = `- sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` and y = –1

⇒ x2 = 2(x2 + 2x + 1 + y2)

⇒ x2 = 2x2 + 4x + 2 + 2y2

⇒ x2 + 4x + 2 + 2y2 = 0

⇒ x2 + 4x + 2 + 2(–1)2 = 0  .....[∵y = –1]

⇒ x2 + 4x + 4 = 0

⇒ (x + 2)2 = 0

⇒ x + 2 = 0

⇒ x = –2

Hence, z = x + yi = –2 – i.

Concept: Algebraic Operations of Complex Numbers
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 92]

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 22 | Page 92

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×