Find the coefficient of x11 in the expansion of (x3-2x2)12 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`

Advertisement Remove all ads

Solution

Let the general term, i.e., (r + 1)th contain x11.

We have `"T"_(r + 1) = ""^12"C"_r  (x^3)^(12 - r)  (- 2/x^2)^r`

= `""^12"C"_r  x^(36 - 3r - 2r)  (- 1)^r  2r`

= `""^12"C"_r  (-1)^r  2r  x^(36 - 5r)`

Now for this to contain x11

We observe that 36 – 5r = 11

i.e., r = 5

Thus, the coefficient of x11 is  

`""^12"C"_5  (-1)^5  2^5 = - (12 xx 11 xx 10 xx 9 xx 8)/(5 xx 4 xx 3 xx 2) xx 32`

= – 25344

Concept: Binomial Theorem for Positive Integral Indices
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 5 | Page 133
Share
Notifications

View all notifications


      Forgot password?
View in app×