Find the angles between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0
Solution
5l + m + 3n = 0 .......[Given]
∴ m = − (5l + 3n) .......(i)
5mn − 2nl + 6lm = 0 .......[Given]
∴ −5(5l + 3n)n − 2nl − 6l(5l + 3n) = 0 .......[[From (i)]
∴ – 25ln – 15n2 – 2nl – 30l2 – 18nl = 0
∴ – 30l2 – 45ln – 15n2 = 0
∴ 2l2 + 3ln + n2 = 0
∴ (2l + n)(l + n) = 0
∴ n = −2l or n = − l
If n = −2l, then from (i), we get
m = −[5l + 3(– 2l)]
∴ m = l
∴ m = l, n = −2l
∴ Direction ratios of the first line are proportional to l, l, −2l
i.e., 1, 1, −2
If n = − l, then from (i), we get
m = −[5l + 3(– l)]
∴ m = −2l
∴ m = −2l, n = −l
∴ Direction ratios of the second line are proportional to l, −2l, −l
i.e., 1, −2, −1
Let θ be the angle between the two lines.
∴ cos θ = `|(1(1) + 1(2) + (-2)(-1))/(sqrt(1^2 + 1^2 + (-2)^2)*sqrt(1^2 + (-2)^2 + (-1)^2))|`
= `|(1 - 2 + 2)/(sqrt(1 + 1 + 4)*sqrt(1 + 4 + 1))|`
= `|1/(sqrt(6)*sqrt(6))|`
= `1/6`
∴ θ = `cos^-1(1/6)`