Advertisement Remove all ads

Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1). - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1).

Advertisement Remove all ads

Solution

The position vectors `bar"p", bar"q",` and `bar"r"` of the points P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1) are
`bar"p" = - hat"j" - 2hat"k"` ,
`bar"q" = 3hat"i" + hat"j" + 4hat"k"`,
`bar"r" = 5hat"i" + 7hat"j" + hat"k"`

∴ `bar"PQ" = bar"q" - bar"p"`

`= (3hat"i" + hat"j" + 4hat"k") - (- hat"j" - 2hat"k")`

`= 3hat"i" + 2hat"j" + 6hat"k"`

and `bar"PR" = bar"r" - bar"p"`

`= (5hat"i" + 7hat"j" + hat"k") - (- hat"j" - 2hat"k")`

`= 5hat"i" + 8hat"j" +3hat"k"`

`= bar"PQ" . bar"PR" = (3hat"i" + 2hat"j" + 6hat"k").(5hat"i" + 8hat"j" +3hat"k")`

`= (3)(5) + (2)(8) + (6)(3)`

= 15 + 16 + 18 = 49

`|bar"PQ"| = sqrt(3^2 + 2^2 + 6^2) = sqrt(9 + 4 + 36) =sqrt49 = 7`

`|bar"PR"| = sqrt(5^2 + 8^2 + 3^2) = sqrt(25 + 64 + 9) = sqrt98 = 7sqrt2`

Using the formula for angle between two vectors,

cos P = `(bar"PQ".bar"PR")/(|bar"PQ"||bar"PR"|)`

`= 49/(7 xx 7sqrt2) = 1/sqrt2 = "cos" 45^circ`

∴ P = 45°.

Concept: Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×