Advertisement Remove all ads

Find the angle between the lines whose direction cosines are given by the equations 6mn - 2nl + 5lm = 0, 3l + m + 5n = 0. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the angle between the lines whose direction cosines are given by the equations 6mn - 2nl + 5lm = 0, 3l + m + 5n = 0.

Advertisement Remove all ads

Solution

Given 6mn - 2nl + 5lm = 0       ....(1)

3l + m + 5n = 0.      ...(2)

From (2), m = - 3l - 5n

Putting the value of m in equation (1), we get,

⇒ 6n(- 3l - 5n) - 2nl + 5l(- 3l - 5n) = 0

⇒ - 18nl - 30n2 - 2nl - 15l2 - 25nl = 0

⇒ - 30n2 - 45nl - 15l2 = 0

⇒ 2n2 + 3nl + l2 = 0

⇒ 2n2 + 2nl + nl + l2 = 0

⇒ (2n + l)(n + l) = 0

∴ 2n + l = 0       OR      n + l = 0

∴ l = - 2n           OR      l = - n

∴ l = - 2n 

From (2), 3l + m + 5n = 0

∴ - 6n + m + 5n = 0

∴ m = n

i.e. (- 2n, n, n) = (-2, 1, 1)

∴ l = - n

∴- 3n + m + 5n = 0

∴ m = - 2n

i.e. (-n, - 2n, n) = (1, 2, -1)

(a1, b1, c1) = (-2, 1, 1) and (a2, b2, c2) = (1, 2, -1)

cos θ = `|("a"_1"a"_2 + "b"_1"b"_2 + "c"_1"c"_2)/(sqrt("a"_1^2 + "b"_1^2 + "c"_1^2).sqrt ("a"_2^2 + "b"^2_2 + "c"_2^2))|`

`= |((2)(1) + (-1)(2) + (-1)(-1))/(sqrt((2)^2 + 1^2 + 1^2).sqrt(1^2 + 2^2 + (1)^2))|`

`= |(2 - 2 + 1)/(sqrt6.sqrt6)|`

`= |- 1/6| = 1/6`

`θ = "cos"^-1 (1/6)`

Concept: Vectors and Their Types
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×