Maharashtra State BoardHSC Science (General) 11th
Advertisement Remove all ads

Find sin 2x, cos 2x, tan 2x if secx = -135,π2<x<π - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find sin 2x, cos 2x, tan 2x if secx = `(-13)/5, pi/2 < x < pi`

Advertisement Remove all ads

Solution

Since `pi/2 < x < pi, x` lies in the second quadrant.

We have sec x = `-13/5`

∴ tan2x = sec2x – 1 = `(-13/5)^2 - 1`

= `169/25 - 1`

= `144/25`

∴ tanx = `±12/5`

But x lies in the second quadrant

∴ tanx is negative

∴ tanx = `-12/5`

∴ sin2x = `(2tanx)/(1 + tan^2x)`

= `(2(-12/5))/(1 + (-12/5)^2)`

= `((-24/5))/(1 + 144/25)`

= `((-24)/5)/(169/25)`

= `(-24)/5 xx 25/169`

= `(-120)/169`

cos2x = `(1 - tan^2x)/(1 + tan^2x)`

= `(1 - (-12/5)^2)/(1 + (-12/5)^2`

= `(1 - 144/25)/(1 + 144/25)`

= `(25 - 144)/(25 + 144)`

= `-119/169`

tan2x = `(2tanx)/(1 - tan^2x)`

= `(2(-12/5))/(1 - (-12/5)^2`

= `((-24/5))/(1 - 144/25)`

= `((-24/5))/((-119/25)`

= `24/5 xx 25/119`

= `120/119`

Concept: Trigonometric Functions of Multiple Angles
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×