Advertisement Remove all ads

Find the Simplest Form of `(2sqrt(45)+3sqrt(20))/(2sqrt(5))` - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find the simplest form of `(2sqrt(45)+3sqrt(20))/(2sqrt(5))`

Advertisement Remove all ads

Solution

`(2sqrt(45)+3sqrt(20))/(2sqrt(5)) = (2sqrt(3xx35) + 3sqrt(2xx2xx5))/(2sqrt(5)`

                             = `(2xx3sqrt(5) +3 xx2 sqrt(5))/(2sqrt(5))`

                             = `(2 xx 3 sqrt (5) + 3 xx 2 sqrt(5))/(2 sqrt(5))`

                             = `(6 sqrt (5) + 6 sqrt (5))/(2 sqrt(5))`

                             = `(12sqrt(5))/(2 sqrt(5))`

                             = 6

Thus, simplified form of  `(2sqrt(45)+3sqrt (20))/(2sqrt (5)` is 6.

Concept: Real Numbers Examples and Solutions
  Is there an error in this question or solution?

APPEARS IN

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×