Advertisement Remove all ads

Find the Rate at Which the Function F (X) = X4 − 2x3 + 3x2 + X + 5 Changes with Respect to X. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.

Advertisement Remove all ads

Solution

\[\text{ Rate } =f'(x)\]
\[ = \frac{d}{dx}\left( x^4 - 2 x^3 + 3 x^2 + x + 5 \right)\]
\[ = \frac{d}{dx}\left( x^4 \right) - 2\frac{d}{dx}\left( x^3 \right) + 3\frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 5 \right)\]
\[ = 4 x^3 - 2\left( 3 x^2 \right) + 3\left( 2x \right) + 1 + 0\]
\[ = 4 x^3 - 6 x^2 + 6x + 1\]

 

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.3 | Q 23 | Page 34

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×