Advertisement Remove all ads

Find the Points on Z-axis Which Are at a Distance √ 21 from the Point (1, 2, 3). - Mathematics

Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 

Advertisement Remove all ads

Solution

Let the point be A (0, 0, z).Then,

AP = \[\sqrt{21}\]

\[\Rightarrow \sqrt{\left( 0 - 1 \right)^2 + \left( 0 - 2 \right)^2 + \left( z - 3 \right)^2} = \sqrt{21}\]
\[ \Rightarrow \left( - 1 \right)^2 + \left( - 2 \right)^2 + \left( z - 3 \right)^2 = 21\]
\[ \Rightarrow 1 + 4 + \left( z - 3 \right)^2 = 21\]
\[ \Rightarrow \left( z - 3 \right)^2 = 21 - 5\]
\[ \Rightarrow \left( z - 3 \right)^2 = 16\]
\[ \Rightarrow z - 3 = \pm 4\]
\[ \Rightarrow z - 3 = 4 or z - 3 = - 4\]
\[ \Rightarrow z = 7 or z = - 1\]

Hence, the coordinates of the required point are (0, 0, 7)  and (0, 0, −1).

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 7 | Page 9
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×