Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Find a Point on the X-axis, Which is Equidistant from the Points (7, 6) and (3, 4). - Mathematics

Sum

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 
Advertisement Remove all ads

Solution

Let C(x, 0) be a point on the x-axis, which is equidistant from the points A(7, 6) and B(3, 4).
\[\therefore\] AC = BC
\[\Rightarrow A C^2 = B C^2\]

\[\Rightarrow \left( 7 - x \right)^2 + \left( 6 - 0 \right)^2 = \left( 3 - x \right)^2 + \left( 4 - 0 \right)^2 \]
\[ \Rightarrow 49 + x^2 - 14x + 36 = 9 + x^2 - 6x + 16\]
\[ \Rightarrow 85 - 14x = 25 - 6x\]
\[ \Rightarrow 60 = 8x\]
\[ \Rightarrow \frac{15}{2} = x\]
Thus, the point on the x-axis, which is equidistant from the points (7, 6) and (3, 4) is \[\left( \frac{15}{2}, 0 \right)\]

Concept: Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.1 | Q 8 | Page 13
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×