Advertisement Remove all ads

Find the Point of Intersection of the Following Pairs of Lines: Y = M 1 X + a M 1 and Y = M 2 X + a M 2 . - Mathematics

Answer in Brief

Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]

Advertisement Remove all ads

Solution

The equations of the lines are \[y = m_1 x + \frac{a}{m_1} \text { and } y = m_2 x + \frac{a}{m_2} .\]

Thus, we have: 

\[m_1 x - y + \frac{a}{m_1} = 0\]               ... (1)         

\[m_2 x - y + \frac{a}{m_2} = 0\]              ... (2)

Solving (1) and (2) using cross-multiplication method:

\[\frac{x}{- \frac{a}{m_2} + \frac{a}{m_1}} = \frac{y}{\frac{a m_2}{m_1} - \frac{a m_1}{m_2}} = \frac{1}{- m_1 + m_2}\]

\[ \Rightarrow x = \frac{\frac{- a}{m_2} + \frac{a}{m_1}}{- m_1 + m_2}, y = \frac{\frac{a m_2}{m_1} - \frac{a m_1}{m_2}}{- m_1 + m_2}\]

\[ \Rightarrow x = \frac{a}{m_1 m_2} \text { and  }y = \frac{a\left( m_1 + m_2 \right)}{m_1 m_2}\]

Hence, the point of intersection is \[\left( \frac{a}{m_1 m_2}, \frac{a\left( m_1 + m_2 \right)}{m_1 m_2} \right) \text { or }\left( \frac{a}{m_1 m_2}, a\left( \frac{1}{m^1} + \frac{1}{m_2} \right) \right)\].

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.1 | Q 1.3 | Page 77
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×