Advertisement Remove all ads

Find the Perimeter of the Curve R=A(1-cos 𝜽) - Applied Mathematics 2

Sum

Find the perimeter of the curve r=a(1-cos 𝜽)

Advertisement Remove all ads

Solution

Curve : r=a(1-cos 𝜽)

Perimeter of given curve is ,

`s=2xxint_0^pisqrt(r^2+((dr)/(d theta))^2d theta)`

`(dr)/(d theta)=a(sin theta)=>((dr)/(d theta))^2=a^2sin^2theta`

`r^2+((dr)/(d theta))^2=a^2[1-2cos theta+cos^2 theta]+a^2sin^2theta`

`sqrt(r^2+((dr)/(d theta))^2)=sqrt(2a)(1-cos theta)^(1/2)`

`=sqrt(2a)sqrt2sin(theta/2)`

`therefore s = 2int_0^pisqrt(2a)sqrt2sin(theta/2)d theta`

`=4aint_0^pisin(theta/2)d theta`

`=4a[-2cos(theta/2)]_0^pi`

∴ S = 8a

Concept: Rectification of Plane Curves
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×