Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

Find the Particular Solution When X = 0 and Y = π. - Mathematics and Statistics

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.

Advertisement Remove all ads

Solution

3ex tanydx + (1 +ex) sec2 ydy = 0

Divide by tany(1+ex)

`(3e^x)/(1+e^x)dx+(sec^2y)/(tany)dy=0`

`int(3e^x)/(1+e^x)dx+int(sec^2y)/(tany)dy=0`

Put tan y = t

dt = sec2y

`3 log|1+e^x|+int1/tdt=c`

`3log|1+e^x|+log|t|=c`

`3log|1+e^x|+log|tany|=c ................(1)`

put x=0 and y=pi in (1)

`3log|1+e^0|+log|0|=c`

`3log|2|=c................(2)`

`3log|1+e^x|+log|tany|=3log|2| `

`3log|1+e^x|+log|tany|-3log|2|=0`

`3(log|1+e^x|-log|2|)+log|tany|=0`

`3log((1+e^x)/2)+log|tany|=0`

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×