Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
Advertisement Remove all ads
Solution
xi | Mid-Values(yi) | yi2 | fi | fi yi | fi yi2 |
1–3 | 2 | 4 | 6 | 12 | 24 |
3–5 | 4 | 16 | 4 | 16 | 64 |
5–7 | 6 | 36 | 5 | 30 | 180 |
7–10 | 8.5 | 72.25 | 1 | 8.5 | 72.25 |
`sum f_i = 16` |
\[\sum_{} f_i y_i = 66 . 5\]
|
\[\sum_{}$ f_i {y_i}^2 = 340 . 25\]
|
Therefore,
Mean =
\[\frac{\sum_{} f_i y_i}{\sum_{} f_i} = \frac{66 . 5}{16} = 4 . 16\]
Variance =\[\left( \frac{1}{N} \sum_{} f_i y_i^2 \right) - \left( \frac{1}{N} \sum_{} f {}_i y {}_i \right)^2 = \frac{1}{16} \times 340 . 25 - \left( \frac{1}{16} \times 66 . 5 \right)^2 = 21 . 26 - 17 . 22 = 4 . 04\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads