Advertisement Remove all ads

Find the Maximum and Minimum Values of Each of the Following Trigonometrical Expression: 12 Sin X − 5 Cos X - Mathematics

Short Note

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 

Advertisement Remove all ads

Solution

\[\text{ Let } f\left( x \right) = 12 \sin x - 5 \cos x\]
\[\text{ We know that }\]
\[ - \sqrt{{12}^2 + ( - 5 )^2} \leq 12 \sin x - 5 \cos x \leq \sqrt{{12}^2 + ( - 5 )^2}\]
\[ - \sqrt{144 + 25} \leq 12 \sin x - 5 \cos x \leq \sqrt{144 + 25}\]
\[ - 13 \leq 12 \sin x - 5 \cos x \leq 13\]
\[\text{ Hence the maximum and minumun values of }f\left( x \right) \text{ are 13 and - 13, respectively } .\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.2 | Q 1.1 | Page 26
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×