Advertisement Remove all ads
Advertisement Remove all ads
Find the length of cycloid from one cusp to the next , where `x=a(θ + sinθ) , y=a(1-cosθ)`
Advertisement Remove all ads
Solution
Given curve :Cycloid `x=a(θ + sinθ) , y=a(1-cosθ)`
The length of given curve is :
`s=int_(θ1)^(θ2) sqrt((dx/(dθ))+(dy/(dθ))^2 dθ)`
`dx/(dθ)=a(1+cosθ) dy/(dθ)=a sin θ`
∴ `(dx/(dθ))^2 +(dy/(dθ))^2=a^2[1+2 cosθ +cos^2 θ+sin^2θ ]`
=`2a^2[1+cosθ]`
= `4a^2 [cos^2 θ/2]`
∴`sqrt((dx/dθ)^2+(dy/(dθ))^2)= 2a cos θ/2`
∴` s= int_-pi^pi 2acos θ/2 dθ`
= `2xxint_0^pi 2 a cos θ/2 dθ`
=` 4a [2 sin θ/2]_0^pi`
∴ `s= 8a`
Concept: Linear Differential Equation with Constant Coefficient‐ Complementary Function
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads