Advertisement Remove all ads

Find the Length of Cycloid from One Cusp to the Next , Where X = a ( θ + Sin θ ) , Y = a ( 1 − Cos θ ) - Applied Mathematics 2

Find the length of cycloid from one cusp to the next , where `x=a(θ + sinθ) , y=a(1-cosθ)`

Advertisement Remove all ads

Solution

Given curve :Cycloid `x=a(θ + sinθ) , y=a(1-cosθ)`  

The length of given curve is : 

`s=int_(θ1)^(θ2) sqrt((dx/(dθ))+(dy/(dθ))^2 dθ)` 

`dx/(dθ)=a(1+cosθ)                dy/(dθ)=a sin θ` 

∴ `(dx/(dθ))^2 +(dy/(dθ))^2=a^2[1+2 cosθ +cos^2 θ+sin^2θ ]`

                      =`2a^2[1+cosθ]`

                      = `4a^2 [cos^2  θ/2]`

∴`sqrt((dx/dθ)^2+(dy/(dθ))^2)= 2a cos  θ/2` 

∴` s= int_-pi^pi 2acos  θ/2  dθ`

= `2xxint_0^pi 2 a cos  θ/2 dθ` 

=` 4a [2 sin  θ/2]_0^pi` 

∴ `s= 8a`

 

Concept: Linear Differential Equation with Constant Coefficient‐ Complementary Function
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×