Advertisement Remove all ads

Find k, such that the function  P(x)=k(4/x) ;x=0,1,2,3,4 k>0 - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find k, such that the function  P(x)=k(4/x) ;x=0,1,2,3,4 k>0

                                                 =0 ,otherwise

Advertisement Remove all ads

Solution

P(x)=k(4/x) ;x=0,1,2,3,4 k>0

      =0 ,otherwise

`P(X = 0) = k^4C_0 = k(1) = k`

`P(X = 1) = k^4C_1 = k(4) = 4k`

`P(X = 2) = k^4C_2 = k(6) = 6k `

`P(X = 3) = k^4C_3 = k(4) = 4k`

`P(X = 4) = k^4C_4 = k(1) = k`

X 0 1 2 3 4
P(X = x): k 4k 6k 4k k

Since, the function represents a p.m.f.

`sum_(x=0)^4P(X=x)=1`

k + 4k + 6k + 4k + k = 1
16k = 1

 k = 1/16

Concept: Standard Deviation of Binomial Distribution (P.M.F.)
  Is there an error in this question or solution?

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×