Advertisement Remove all ads

Find: int"dx"/sqrt(5-4"x" - 2"x"^2) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`

Advertisement Remove all ads

Solution

`int"dx"/sqrt(5-4"x" - 2"x"^2)`

` = int "dx"/sqrt(2[5/2-2"x"-"x"^2]`

` =1/sqrt2int"dx"/sqrt(5/2 - 2"x" - "x"^2)`

` = 1/sqrt2 int"dx"/sqrt(5/2-("x"^2+2"x"))`

` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"^2+2"x"+1-1))`

` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"+1)^2+1`

` = 1/sqrt2 int"dx"/(7/2-("x"+1)^2)`

` = 1/sqrt2 int "dx"/sqrt((sqrt7/sqrt2)^2 - ("x"+1)^2)`

` = 1/sqrt2sin^-1((("x"+1)sqrt2)/sqrt7) + "C"`

` = 1/sqrt2sin^-1 (sqrt(2/7) ("x"+1)) + "C"`

Concept: Integration Using Trigonometric Identities
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×