Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Advertisement Remove all ads
Solution
Consider the given integral
`I=int((2x-5)e^(2x))/((2x-3)^2)dx`
Rewriting the above integral as
`I=inte^(2x-3) xxe^3(2x-3-2)/((2x-3)^3)dx`
`=e^3inte^(2x-3)[(2x-3)/(2x-3)^3-2/(2x-3)^3]dx`
`=e^3inte^(2x-3) [1/(2x-3)^2-2/(2x-3)^3]dx`
Let us consider, 2x -3 = t
⇒ 2dx = dt
`therefore I=e^3/2inte^t[(t-2)/t^3]dt`
Let `f(t)=1/t^2`
`f'(t)=(-2)/t^3`
if I = ∫et[f(t)+f'(t)]dt then, I = etf(t) + C
`:.I=e^3/2xxe^txxf(t)+C`
`= e^3/2xxe^txx1/t^2+C`
`=e^3/2xxe^(2x-3)xx1/(2x-3)^2+C`
`=e^(2x)/(2(2x-3))+C`
Concept: Methods of Integration: Integration by Substitution
Is there an error in this question or solution?