Advertisement Remove all ads

Find the General Solution of the Following Equation: Sin 2 X = Cos 3 X - Mathematics

Sum

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]
Advertisement Remove all ads

Solution

We have:

\[\sin2x = \cos3x\]
\[\cos3x = \sin2x\]

⇒ \[\cos3x = \cos \left( \frac{\pi}{2} - 2x \right)\]

⇒ \[3x = 2n\pi \pm \left( \frac{\pi}{2} - 2x \right), n \in Z\]

On taking positive sign, we have:
\[3x = 2n\pi + \left( \frac{\pi}{2} - 2x \right)\]

⇒ \[5x = 2n\pi + \frac{\pi}{2}\]

⇒ \[x = \frac{2n\pi}{5} + \frac{\pi}{10}\]

⇒ \[x = (4n + 1)\frac{\pi}{10}\]

\[n \in Z\]

 Now, on taking negative sign, we have:

\[3x = 2n\pi - \frac{\pi}{2} + 2x, n \in Z\]
⇒ \[x = 2n\pi - \frac{\pi}{2}\]
⇒ \[x = (4n - 1)\frac{\pi}{2}, n \in Z\]
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 2.04 | Page 21
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×