Advertisement Remove all ads

Find the Following Product and Verify the Result for X = − 1, Y = − 2: (X2y − 1) (3 − 2x2y) - Mathematics

Answer in Brief

Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)

Advertisement Remove all ads

Solution

To multiply, we will  use distributive law as follows:

\[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]

\[ = x^2 y\left( 3 - 2 x^2 y \right) - 1 \times \left( 3 - 2 x^2 y \right)\]

\[ = 3 x^2 y - 2 x^4 y^2 - 3 + 2 x^2 y\]

\[ = 5 x^2 y - 2 x^4 y^2 - 3\]

\[\therefore\] \[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right) = 5 x^2 y - 2 x^4 y^2 - 3\]

Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.

\[\text { LHS } =\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]

\[ = \left[ \left( - 1 \right)^2 \left( - 2 \right) - 1 \right]\left[ 3 - 2 \left( - 1 \right)^2 \left( - 2 \right) \right]\]

\[ = \left[ 1 \times \left( - 2 \right) - 1 \right]\left[ 3 - 2 \times 1 \times \left( - 2 \right) \right]\]

\[ = \left( - 2 - 1 \right)\left( 3 + 4 \right)\]

\[ = - 3 \times 7\]

\[ = - 21\]

\[\text { RHS } = 5 x^2 y - 2 x^4 y^2 - 3\]

\[ = 5 \left( - 1 \right)^2 \left( - 2 \right) - 2 \left( - 1 \right)^4 \left( - 2 \right)^2 - 3\]

\[ = \left[ 5 \times 1 \times \left( - 2 \right) \right] - \left[ 2 \times 1 \times 4 \right] - 3\]

\[ = - 10 - 8 - 3\]

\[ = - 21\]

Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[5 x^2 y - 2 x^4 y^2 - 3\].

Concept: Multiplication of Algebraic Expressions
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 8 Maths
Chapter 6 Algebraic Expressions and Identities
Exercise 6.5 | Q 18 | Page 31
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×