Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Solution
To multiply, we will use distributive law as follows:
\[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]
\[ = x^2 y\left( 3 - 2 x^2 y \right) - 1 \times \left( 3 - 2 x^2 y \right)\]
\[ = 3 x^2 y - 2 x^4 y^2 - 3 + 2 x^2 y\]
\[ = 5 x^2 y - 2 x^4 y^2 - 3\]
\[\therefore\] \[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right) = 5 x^2 y - 2 x^4 y^2 - 3\]
Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.
\[\text { LHS } =\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]
\[ = \left[ \left( - 1 \right)^2 \left( - 2 \right) - 1 \right]\left[ 3 - 2 \left( - 1 \right)^2 \left( - 2 \right) \right]\]
\[ = \left[ 1 \times \left( - 2 \right) - 1 \right]\left[ 3 - 2 \times 1 \times \left( - 2 \right) \right]\]
\[ = \left( - 2 - 1 \right)\left( 3 + 4 \right)\]
\[ = - 3 \times 7\]
\[ = - 21\]
\[\text { RHS } = 5 x^2 y - 2 x^4 y^2 - 3\]
\[ = 5 \left( - 1 \right)^2 \left( - 2 \right) - 2 \left( - 1 \right)^4 \left( - 2 \right)^2 - 3\]
\[ = \left[ 5 \times 1 \times \left( - 2 \right) \right] - \left[ 2 \times 1 \times 4 \right] - 3\]
\[ = - 10 - 8 - 3\]
\[ = - 21\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[5 x^2 y - 2 x^4 y^2 - 3\].