Answer in Brief
Find the following product: (3x − 4y) (2x − 4y)
Advertisement Remove all ads
Solution
Here, we will use the identity \[\left( x - a \right)\left( x - b \right) = x^2 - \left( a + b \right)x + ab\].
\[\left( 3x - 4y \right)\left( 2x - 4y \right)\]
\[ = \left( 4y - 3x \right)\left( 4y - 2x \right) (\text { Taking common - 1 from both parentheses })\]
\[ = \left( 4y \right)^2 - \left( 3x + 2x \right)\left( 4y \right) + 3x \times 2x\]
\[ = 16 y^2 - \left( 12xy + 8xy \right) + 6 x^2 \]
\[ = 16 y^2 - 20xy + 6 x^2\]
Concept: Concept of Identity
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads