Answer in Brief
Find the following product:
0.1y(0.1x5 + 0.1y)
Advertisement Remove all ads
Solution
To find the product, we will use distributive law as follows:
\[0 . 1y\left( 0 . 1 x^5 + 0 . 1y \right)\]
\[ = \left( 0 . 1y \right)\left( 0 . 1 x^5 \right) + \left( 0 . 1y \right)\left( 0 . 1y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( y \times x^5 \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y \times y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( x^5 \times y \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y^{1 + 1} \right)\]
\[ = 0 . 01 x^5 y + 0 . 01 y^2\]
Thus, the answer is \[0 . 01 x^5 y + 0 . 01 y^2\].
Concept: Multiplication of Algebraic Expressions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads