Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Find the Equations of the Sides of the Triangles the Coordinates of Whose Angular Point is Respectively (1, 4), (2, −3) and (−1, −2). - Mathematics

Answer in Brief

Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).

Advertisement Remove all ads

Solution

Let the given points be A (1, 4), B (2, −3) and C (−1, −2).

Let \[m_1 , m_2 \text { and } m_3\] be the slopes of the sides AB, BC and CA, respectively.

\[\therefore m_1 = \frac{- 3 - 4}{2 - 1}, m_2 = \frac{- 2 + 3}{- 1 - 2} \text { and } m_3 = \frac{4 + 2}{1 + 1}\]

\[ \Rightarrow m_1 = - 7, m_2 = - \frac{1}{3} \text { and } m_3 = 3\]

So, the equations of the sides AB, BC and CA are

\[y - 4 = - 7\left( x - 1 \right), y + 3 = - \frac{1}{3}\left( x - 2 \right) \text { and } y + 2 = 3\left( x + 1 \right)\]

\[ \Rightarrow 7x + y = 11, x + 3y + 7 = 0\text { and } 3x - y + 1 = 0\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.5 | Q 2.1 | Page 35
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×