Advertisement Remove all ads

# Find the Equations of the Lines Through the Point of Intersection of the Lines X − Y + 1 = 0 and 2x − 3y + 5 = 0, Whose Distance from the Point(3, 2) is 7/5. - Mathematics

Answer in Brief

Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.

Advertisement Remove all ads

#### Solution

The equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y + 5 = 0 is given by
x − y + 1 + a(2x − 3y + 5) = 0
⇒ (1 + 2a)x  + y(−3a − 1) + 5a + 1 = 0                          .....(1)
The distance of the above line from the point is given by $\frac{3\left( 2a + 1 \right) + 2\left( - 3a - 1 \right) + 5a + 1}{\sqrt{\left( 2a + 1 \right)^2 + \left( - 3a - 1 \right)^2}}$

$\therefore \frac{\left| 3\left( 2a + 1 \right) + 2\left( - 3a - 1 \right) + 5a + 1 \right|}{\sqrt{\left( 2a + 1 \right)^2 + \left( - 3a - 1 \right)^2}} = \frac{7}{5}$

$\Rightarrow \frac{\left| 5a + 2 \right|}{\sqrt{13 a^2 + 10a + 2}} = \frac{7}{5}$

$\Rightarrow 25 \left( 5a + 2 \right)^2 = 49\left( 13 a^2 + 10a + 2 \right)$

$\Rightarrow 6 a^2 - 5a - 1 = 0$

$\Rightarrow a = 1, - \frac{1}{6}$

Substituting the value of a in (1),  we get
3x − 4y + 6 = 0 and 4x − 3y + 1 = 0

Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.19 | Q 11 | Page 131
Advertisement Remove all ads

#### Video TutorialsVIEW ALL 

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?