Advertisement Remove all ads

Find the Equation of the Plane Through the Line of Intersection of the Planes X + Y + Z = 1 and 2x + 3y + 4z = 5 Which is Perpendicular to the Plane X − Y + Z = 0. Also Find the Distance of the Plane, Obtained Above, from the Origi - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0. Also find the distance of the plane, obtained above, from the origin.

Advertisement Remove all ads

Solution

Equation of the plane through the line of intersection of the two planes is
   

` (x+y+z−1)+λ(2x+3y+4z−5)=0⇒(1+2λ)x+(1+3λ)y+(1+4λ)z−1−5λ=0                        .........(1)`


Normal vector of the required plane is

`vecN =(1+2λ)hati+(1+3λ)hatj+(1+4λ)hatk`



Since this plane is perpendicular to x-y+z=0, their normals are also perpendicular.

`⇒vecN_1.vecN_2=0`

`⇒((1+2λ)hati+(1+3λ)hatj+(1+4λ)hatk).(hati−hatj+hatk)=0`

`⇒1+2λ−1−3λ+1+4λ=0`

`⇒λ=−1/3`

Substituting the value of λ in equation (1), to obtain the required equation of the plane

`(1+2(−1/3))x+(1+3(−1/3))y+(1+4(−1/3))z−1−5(−1/3)`

 

=0 

xz+2=0

To find out the distance of this plane from the origin we need to convert this equation to the standard form:

lx+my+nz=d

Dividing both sides of the equation by 
`sqrt2`

, we get:

`x/sqrt2−z/sqrt2=−2/sqrt2`

`x/sqrt2−z/sqrt2=−sqrt2`

 


 Hence, the distance of the plane from the origin is 
`sqrt2`  units.

Concept: Distance of a Point from a Plane
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×