Find dydxdydx if, y = axa2+x23 - Mathematics and Statistics

Advertisement
Advertisement
Sum

Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`

Advertisement

Solution

y = `root(3)("a"^2 + "x"^2)`

∴ y = `("a"^2 + "x"^2)^(1/3)`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"[("a"^2 + "x"^2)^(1/3)]`

`= 1/3 ("a"^2 + "x"^2)^(-2/3) * "d"/"dx" ("a"^2 + "x"^2)`

`= 1/3 ("a"^2 + "x"^2)^(-2/3) * (0 + 2"x")`

∴ `"dy"/"dx" = "2x"/3 ("a"^2 + "x"^2)^(-2/3)`

  Is there an error in this question or solution?
Chapter 3: Differentiation - Exercise 3.1 [Page 90]

APPEARS IN

Share
Notifications



      Forgot password?
Use app×