Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

Find dydx, if y = [log(log(logx))]2 - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 

Advertisement Remove all ads

Solution

y = [log(log(logx))]2  

Differentiating both sides w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)[log(log(logx))]^2`

= `2[log(log(logx))] xx "d"/("d"x)[log(log(logx))]`

= `2[log(log(logx))] xx 1/(log(logx)) xx "d"/("d"x)[log(logx)]`

= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx "d"/("d"x)(log x)`

= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx 1/x`

∴ `("d"y)/("d"x) = (2[log(log(logx))])/(x(logx)(log(logx)))`

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×