Find dydx, if y = (3x-1)(2x+3)(5-x)23 - Mathematics and Statistics

Advertisements
Advertisements
Sum

Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`

Advertisements

Solution

y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`

= `(3x - 1)^(1/3)/((2x + 3)^(1/3)*(5 - x)^(2/3)`

Taking logarithm of both sides, we get

log y = `log[(3x - 1)^(1/3)/((2x - 3)^(1/3)*(5 - x)^(2/3))]`

= `log(3x - 1)^(1/3) - [log(2x + 3)^(1/3) + log(5 - x)^(2/3)]`

= `1/3log(3x - 1) - [1/3 log(2x + 3) + 2/3log(5 - x)]`

Differentiating both sides w.r.t. x, we get

`"d"/("d"x)(log y) = 1/3*"d"/("d"x)[log(3x - 1)] - 1/3*"d"/("d"x)[log(2x + 3)] - 2/3*"d"/("d"x)[log(5 - x)]`

∴ `1/y*("d"y)/("d"x) = 1/3*1/((3x - 1))*"d"/("d"x)(3x - 1) - 1/3*1/((2x + 3))*"d"/("d"x)(2x + 3) - 2/3*1/((5 - x))*"d"/("d"x)(5 - x)`

∴ `1/y*("d"y)/("d"x) = 1/(3(3x - 1)) xx (3 - 0) - 1/(3(2x + 3)) xx (2 + 0) - 2/(3(5 - x)) xx (0 - 1)`

∴ `1/y*("d"y)/("d"x) = 1/(3x - 1)- 2/(3(2x + 3)) + 2/(3(5 - x))` 

∴ `("d"y)/("d"x) = y/3[3/(3x - 1) - 2/(2x + 3) + 2/(5 - x)]`

∴ `("d"y)/("d"x) = 1/3 root(3)((3x - 1)/((2x + 3)*(5 - x)^2)) [3/(3x - 1) - 2/(2x + 3) + 2/(5 - x)]`

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.5

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


Choose the correct alternative.

If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


If u = 5x and v = log x, then `("du")/("dv")` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


`int 1/(4x^2 - 1) dx` = ______.


If y = x . log x then `dy/dx` = ______.


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx if, y =  x^(e^x)`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Share
Notifications



      Forgot password?
Use app×