Find dydx, if xy = yx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Find `(dy)/(dx)`, if xy = yx 

Advertisements

Solution

Given xy = yx 

Taking logarithm of both sides, we get

log xy = log yx

∴ y log x = x log y

Differentiating both sides w.r.t.x, we get

`d/(dx)(ylogx) = d/(dx)(xlogy)`

∴ `y.d/(dx)(logx) + d/(dx)(y) = x.d/(dx)(logy) + logy. d/(dx)(x)`

∴ `y. 1/x + logx.(dy)/(dx) = x. 1/y.(dy)/(dx) + logy.1`

∴ `(logx - x/y)(dy)/(dx) = (logy - y/x)`

∴ `((ylogx - x)/y) (dy)/(dx) = (xlogy - y)/x`

∴ `(dy)/(dx) = ((xlogy - y)/x) xx (y/(ylogx - x))`

∴ `(dy)/(dx) = y/x((xlogy - y)/(ylogx - x))`

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.4

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


If y = elogx then `dy/dx` = ?


Choose the correct alternative.

If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


If xy = 2x – y, then `("d"y)/("d"x)` = ______


If u = 5x and v = log x, then `("du")/("dv")` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications



      Forgot password?
Use app×