Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

Find dydx, if xy = yx - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find `("d"y)/("d"x)`, if xy = yx 

Advertisement Remove all ads

Solution

xy = yx 

Taking logarithm of both sides, we get

log xy = log yx

∴ y log x = x log y

Differentiating both sides w.r.t. x, we get

`"d"/("d"x)(y log x) = "d"/("d"x)(x log y)`

∴ `y*"d"/("d"x)(log x) + "d"/("d"x)(y) = x*"d"/("d"x)(log y) + log y* "d"/("d"x)(x)`

∴ `y*1/x + logx*("d"y)/("d"x) = x*1/y*("d"y)/("d"x) + logy*1`

∴ `logx ("d"y)/("d"x) - x/y*("d"y)/("d"x) = logy - y/x`

∴ `((ylogx - x)/y) ("d"y)/("d"x) = (xlogy - y)/x`

∴ `("d"y)/("d"x) = (xlogy - y)/x xx y/(ylogx - x)`

∴ `("d"y)/("d"x) = y/x((xlogy - y)/(ylogx - x))`

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×