Sum
Find `("d"y)/("d"x)`, if xy = yx
Advertisement Remove all ads
Solution
xy = yx
Taking logarithm of both sides, we get
log xy = log yx
∴ y log x = x log y
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(y log x) = "d"/("d"x)(x log y)`
∴ `y*"d"/("d"x)(log x) + "d"/("d"x)(y) = x*"d"/("d"x)(log y) + log y* "d"/("d"x)(x)`
∴ `y*1/x + logx*("d"y)/("d"x) = x*1/y*("d"y)/("d"x) + logy*1`
∴ `logx ("d"y)/("d"x) - x/y*("d"y)/("d"x) = logy - y/x`
∴ `((ylogx - x)/y) ("d"y)/("d"x) = (xlogy - y)/x`
∴ `("d"y)/("d"x) = (xlogy - y)/x xx y/(ylogx - x)`
∴ `("d"y)/("d"x) = y/x((xlogy - y)/(ylogx - x))`
Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads