Find dydx, if xy = log(xy) - Mathematics and Statistics

Advertisements
Advertisements
Sum

Find `("d"y)/("d"x)`, if xy = log(xy)

Advertisements

Solution

xy = log(xy)

Differentiating both sides w.r.t. x, we get

`x*("d"y)/("d"x) + y*"d"/("d"x)(x) = 1/(xy)*"d"/("d"x)(xy)`

∴ `x*("d"y)/("d"x) + y*1 = 1/(xy)[x*("d"y)/("d"x) + y*"d"/("d"x)(x)]`

∴ `x*("d"y)/("d"x) + y = 1/(xy)(x("d"y)/("d"x) + y*1)`

∴ `x*("d"y)/("d"x) + y = 1/y*("d"y)/("d"x) + 1/x`

∴ `(x - 1/y)("d"y)/("d"x) = 1/x - y`

∴ `-((1 - xy)/y)("d"y)/("d"x) = ((1 - xy)/x)`

∴ `("d"y)/("d"x) = -((1 - xy)/x) xx (y/(1 - xy))`

∴ `("d"y)/("d"x) = (-y)/x`

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.4

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


If y = elogx then `dy/dx` = ?


Fill in the Blank

If 0 = log(xy) + a, then `"dy"/"dx" =  (-"y")/square`


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


The derivative of ax is ax log a.


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


If u = 5x and v = log x, then `("du")/("dv")` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


If y = (log x)2 the `dy/dx` = ______.


Find`dy/dx if, y = x^(e^x)`


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications



      Forgot password?
Use app×