Advertisement
Advertisement
Advertisement
Sum
Find `"dy"/"dx"`, if x = e3t , y = `"e"^(4"t" + 5)`
Advertisement
Solution
x = e3t
Differentiating both sides w.r.t. t, we get
`"dx"/"dt" = "e"^"3t" * "d"/"dx" (3"t") = "e"^"3t"* (3) = 3 "e"^"3t"`
y = `"e"^(4"t" + 5)`
Differentiating both sides w.r.t. t, we get
`"dy"/"dt" = "e"^(4"t" + 5) * "d"/"dx" ("4t" + 5) = "e"^(4"t" + 5) * (4 + 0)`
`= 4 * "e"^(4"t" + 5)`
∴ `"dy"/"dx" = (("dy"/"dt"))/(("dy"/"dt")) = (4 * "e"^(4"t" + 5))/(3 "e"^"3t") = 4/3 "e"^("t + 5")`
Concept: Derivatives of Parametric Functions
Is there an error in this question or solution?