Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Find the Domain and Range of the Real Valued Function: (Ii) F ( X ) = a X − B C X − D - Mathematics

Find the domain and range of the real valued function:

(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]

 

 

Advertisement Remove all ads

Solution

Given:

\[f\left( x \right) = \frac{ax - b}{cx - d}\] 
Domain of f : Clearly,  (x) is a rational function of x as \[\frac{ax - b}{cx - d}\] is a rational expression.
Clearly, f (x) assumes real values for all x except for all those values of x for which ( cx - d) = 0, i.e. cx = d.
\[\Rightarrow x = \frac{d}{c}\] Hence, domain ( f ) = \[R - \left\{ \frac{d}{c} \right\}\] Range of f :
Let f (x) = y ⇒ (ax -b) = y( cx -d)
⇒ (ax - b) = (cxy - dy)
⇒ dy - b = cxy - ax 
⇒ dy  - b = x(cy - a)
 \[\Rightarrow x = \frac{dy - b}{cy - a}\]
Clearly, f (x) assumes real values for all x except for all those values of x for which ( cya) = 0, i.e. cy = a.
\[\Rightarrow y = \frac{a}{c}\] Hence, range ( f ) = \[R - \left\{ \frac{a}{c} \right\}\]
 
 
 
 

 
 
 
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 3 Functions
Exercise 3.3 | Q 3.02 | Page 18
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×