Karnataka Board PUCPUC Science 2nd PUC Class 12

Find the Domain of the Following Function: `F(X) = Sin^-1x + Sinx` - Mathematics

Advertisements
Advertisements

Find the domain of the following function:

`f(x) = sin^-1x + sinx`

Advertisements

Solution

Let f(x) = g(x) + h(x), where 
Therefore, the domain of f(x) is given by the intersection of the domain of g(x) and h(x)
The domain of g(x) is [−1, 1]
The domain of h(x) is (−∞, ∞)
Therfore, the intersection of g(x) and h(x) is [−1, 1]
Hence, the domain is [−1, 1].

  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.01 [Page 7]

APPEARS IN

RD Sharma Class 12 Maths
Chapter 4 Inverse Trigonometric Functions
Exercise 4.01 | Q 3.2 | Page 7

RELATED QUESTIONS

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the principal value of `cosec^(-1)(-sqrt2)`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `A/2`.


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


In ΔABC, prove the following:

`"cos A"/"a" + "cos B"/"b" + "cos C"/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:
tan 5θ = -1


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate:

`sin[cos^-1 (3/5)]`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

cosec-1 (2)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


Find the principal value of `sec^-1 (- sqrt(2))`


Find the principal value of `tan^-1 (sqrt(3))`


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


Domain and Rariges of cos–1 is:-


What will be the principal value of `sin^-1(-1/2)`?


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


If f'(x) = x–1, then find f(x)


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


cos–1(cos10) is equal to ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications



      Forgot password?
Use app×