Karnataka Board PUCPUC Science 2nd PUC Class 12

Find the Domain of `F(X)=Cotx+Cot^-1x` - Mathematics

Advertisements
Advertisements

Find the domain of `f(x)=cotx+cot^-1x`

Advertisements

Solution

Let f(x) = g(x) + h(x), where g(x) = cot x and h (x) = cot-1x

Therefore, the domain of f(x) is given by the intersection of the domain of g(x) and h(x)

The domain of g(x) is R − { nπ, n ⋵ Z}

The domain of h(x) is (0, π )

Therfore, the intersection of g(x) and h(x) is R − { nπ, n ⋵ Z}

  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.06 [Page 24]

APPEARS IN

RD Sharma Class 12 Maths
Chapter 4 Inverse Trigonometric Functions
Exercise 4.06 | Q 2 | Page 24

RELATED QUESTIONS

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: tan- 1( - √3)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


In ΔABC, prove the following:

`"cos A"/"a" + "cos B"/"b" + "cos C"/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


Find the principal solutions of the following equation:
tan 5θ = -1


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate:

`sin[cos^-1 (3/5)]`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

cosec-1 (2)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


Find the principal value of `sec^-1 (- sqrt(2))`


Find the principal value of `tan^-1 (sqrt(3))`


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


Which of the following function has period 2?


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function y = sin–1 (– x2) is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


When `"x" = "x"/2`, then tan x is ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


3 tan-1 a is equal to ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


Which of the following functions is inverse of itself?


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


What will be the principal value of `sin^-1(-1/2)`?


Find the principal value of `tan^-1 (sqrt(3))`


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


If f'(x) = x–1, then find f(x)


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


cos–1(cos10) is equal to ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


sin [cot–1 (cos (tan–1 x))] = ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications



      Forgot password?
Use app×