Advertisement Remove all ads

Find the Distance of the Point (4, 5) from the Straight Line 3x − 5y + 7 = 0. - Mathematics

Answer in Brief

Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.

Advertisement Remove all ads

Solution

Comparing ax + by + c = 0 and 3x − 5y + 7 = 0, we get:
a = 3, b = − 5 and c = 7
So, the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0 is

\[d = \left| \frac{a x_1 + b y_1 + c}{\sqrt{a^2 + b^2}} \right|\]

\[ \Rightarrow d = \left| \frac{3 \times 4 - 5 \times 5 + 7}{\sqrt{3^2 + \left( - 5 \right)^2}} \right| = \frac{6}{\sqrt{34}}\]

Hence, the required distance is \[\frac{6}{\sqrt{34}}\].

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.15 | Q 1 | Page 107
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×