Find the Dimensions of the Specific Heat Capacity C. (A) the Specific Heat Capacity C, (B) the Coefficient of Linear Expansion α and (C) the Gas Constant R. Some of the Equations Involving - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.

Advertisement Remove all ads


 (a) Specific heat capacity, 
\[C = \frac{Q}{m ∆ T}\]

\[\left[ Q \right] = {\left[ {ML}^2 T^{- 2} \right]}$ \text{ and } \left[ T \right] = \left[ K \right]\]
\[\text{So, }\left[ C \right] = \frac{\left[ {ML}^2 T^{- 2} \right]}{\left[ M \right] \left[ K \right]} = \left[ L^2 T^{- 2} K^{- 1} \right]\]
(b) Coefficient of linear expansion,
\[\alpha = \frac{L_1 - L_0}{L_0 ∆ T}\] So,
\[\left[ \alpha \right] = \frac{\left[ L \right]}{\left[ LK \right]} = \left[ K^{- 1} \right]\]
(c) Gas constant, \[R = \frac{PV}{nT}\]
\[\text{Here, }\left[ P \right] = {\left[ {ML}^{- 1} T^{- 2} \right]}, [n] = [\text{mol}], [T] = [K]\text{ and }\left[ V \right] = {\left[ L^3 \right]}\]
\[\text{So,} \left[ R \right] = \frac{\left[ {ML}^{- 1} T^{- 2} \right] \left[ L^3 \right]}{\left[\text{ mol }\right] \left[ K \right]} = \left[ {ML}^2 T^{- 2} K^{- 1} (\text{ mol })^{- 1} \right]\]
Concept: What is Physics?
  Is there an error in this question or solution?


HC Verma Class 11, Class 12 Concepts of Physics Vol. 1
Chapter 1 Introduction to Physics
Exercise | Q 6 | Page 10

View all notifications

      Forgot password?
View in app×