Find the Dimensions of the Specific Heat Capacity C. (A) the Specific Heat Capacity C, (B) the Coefficient of Linear Expansion α and (C) the Gas Constant R. Some of the Equations Involving - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.

Advertisement Remove all ads

Solution

 (a) Specific heat capacity, 
\[C = \frac{Q}{m ∆ T}\]

\[\left[ Q \right] = {\left[ {ML}^2 T^{- 2} \right]}$ \text{ and } \left[ T \right] = \left[ K \right]\]
\[\text{So, }\left[ C \right] = \frac{\left[ {ML}^2 T^{- 2} \right]}{\left[ M \right] \left[ K \right]} = \left[ L^2 T^{- 2} K^{- 1} \right]\]
(b) Coefficient of linear expansion,
\[\alpha = \frac{L_1 - L_0}{L_0 ∆ T}\] So,
\[\left[ \alpha \right] = \frac{\left[ L \right]}{\left[ LK \right]} = \left[ K^{- 1} \right]\]
(c) Gas constant, \[R = \frac{PV}{nT}\]
\[\text{Here, }\left[ P \right] = {\left[ {ML}^{- 1} T^{- 2} \right]}, [n] = [\text{mol}], [T] = [K]\text{ and }\left[ V \right] = {\left[ L^3 \right]}\]
\[\text{So,} \left[ R \right] = \frac{\left[ {ML}^{- 1} T^{- 2} \right] \left[ L^3 \right]}{\left[\text{ mol }\right] \left[ K \right]} = \left[ {ML}^2 T^{- 2} K^{- 1} (\text{ mol })^{- 1} \right]\]
Concept: What is Physics?
  Is there an error in this question or solution?

APPEARS IN

HC Verma Class 11, Class 12 Concepts of Physics Vol. 1
Chapter 1 Introduction to Physics
Exercise | Q 6 | Page 10
Share
Notifications

View all notifications


      Forgot password?
View in app×