Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.
Advertisement Remove all ads
Solution
(a) Specific heat capacity,
\[C = \frac{Q}{m ∆ T}\]
\[\left[ Q \right] = {\left[ {ML}^2 T^{- 2} \right]}$ \text{ and } \left[ T \right] = \left[ K \right]\]
\[\text{So, }\left[ C \right] = \frac{\left[ {ML}^2 T^{- 2} \right]}{\left[ M \right] \left[ K \right]} = \left[ L^2 T^{- 2} K^{- 1} \right]\]
(b) Coefficient of linear expansion,
\[\alpha = \frac{L_1 - L_0}{L_0 ∆ T}\] So,
\[\alpha = \frac{L_1 - L_0}{L_0 ∆ T}\] So,
\[\left[ \alpha \right] = \frac{\left[ L \right]}{\left[ LK \right]} = \left[ K^{- 1} \right]\]
(c) Gas constant, \[R = \frac{PV}{nT}\]
\[\text{Here, }\left[ P \right] = {\left[ {ML}^{- 1} T^{- 2} \right]}, [n] = [\text{mol}], [T] = [K]\text{ and }\left[ V \right] = {\left[ L^3 \right]}\]
\[\text{So,} \left[ R \right] = \frac{\left[ {ML}^{- 1} T^{- 2} \right] \left[ L^3 \right]}{\left[\text{ mol }\right] \left[ K \right]} = \left[ {ML}^2 T^{- 2} K^{- 1} (\text{ mol })^{- 1} \right]\]
(c) Gas constant, \[R = \frac{PV}{nT}\]
\[\text{Here, }\left[ P \right] = {\left[ {ML}^{- 1} T^{- 2} \right]}, [n] = [\text{mol}], [T] = [K]\text{ and }\left[ V \right] = {\left[ L^3 \right]}\]
\[\text{So,} \left[ R \right] = \frac{\left[ {ML}^{- 1} T^{- 2} \right] \left[ L^3 \right]}{\left[\text{ mol }\right] \left[ K \right]} = \left[ {ML}^2 T^{- 2} K^{- 1} (\text{ mol })^{- 1} \right]\]
Concept: What is Physics?
Is there an error in this question or solution?