Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Advertisement Remove all ads
Solution
The equation of the family of curves is v=A/r+B, where A and B are arbitrary constants.
We have
v=Ar+B
Differentiating both sides with respect to r, we get
`(dv)/(dr)=-A/r^2+0`
`⇒r^2(dv)/(dr)=−A`
Again, differentiating both sides with respect to r, we get
`r^2xx(d^2v)/(d^2r)+2rxx(dv)/(dr)=0`
`⇒r(d^2v)/(d^2r)+2(dv)/(dr)=0`
This is the differential equation representing the family of the given curves
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads