Find the cube root of the following rational number \[\frac{- 19683}{24389}\] .
Solution
Let us consider the following rational number:
\[\frac{- 19683}{24389}\]
Now,
\[\sqrt[3]{\frac{- 19683}{24389}}\]
\[= \frac{\sqrt[3]{- 19683}}{\sqrt[3]{24389}}\] ( ∵ \[\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}\] )
\[= \frac{- \sqrt[3]{19683}}{\sqrt[3]{24389}}\] ( ∵ \[\sqrt[3]{- a} = - \sqrt[3]{a}\] )
Cube root by factors:
On factorising 19683 into prime factors, we get:
\[19683 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3\]
On grouping the factors in triples of equal factors, we get:
\[19683 = \left\{ 3 \times 3 \times 3 \right\} \times \left\{ 3 \times 3 \times 3 \right\} \times \left\{ 3 \times 3 \times 3 \right\}\]
Now, taking one factor from each triple, we get:
\[\sqrt[3]{19683} = 3 \times 3 \times 3 = 27\]
Also
On factorising 24389 into prime factors, we get:
\[24389 = 29 \times 29 \times 29\]
On grouping the factors in triples of equal factors, we get:
\[24389 = \left\{ 29 \times 29 \times 29 \right\}\]
Now, taking one factor from each triple, we get:
\[\sqrt[3]{24389} = 29\]