Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Advertisement Remove all ads
Solution
Let P (x, y, z) be the required point which is equidistant from the points O(0,0,0), A(2,0,0)
B(0,3,0) and C(0,0,8)
Then,
OP = AP
\[\Rightarrow O P^2 = A P^2\]
\[\therefore x^2 + y^2 + z^2 = \left( x - 2 \right)^2 + y^2 + z^2 \]
\[ \Rightarrow x^2 = \left( x - 2 \right)^2 \]
\[ \Rightarrow x^2 = x^2 - 4x + 4\]
\[ \Rightarrow 4x = 4\]
\[ \Rightarrow x = \frac{4}{4}\]
\[ \therefore x = 1\]
Similarly, we have:
OP = BP
\[ \Rightarrow x^2 = \left( x - 2 \right)^2 \]
\[ \Rightarrow x^2 = x^2 - 4x + 4\]
\[ \Rightarrow 4x = 4\]
\[ \Rightarrow x = \frac{4}{4}\]
\[ \therefore x = 1\]
Similarly, we have:
OP = BP
\[\Rightarrow O P^2 = B P^2 \]
\[\therefore x^2 + y^2 + z^2 = x^2 + \left( y - 3 \right)^2 + z^2 \]
\[ \Rightarrow y^2 = y^2 - 6y + 9\]
\[ \Rightarrow 6y = 9\]
\[ \Rightarrow y = \frac{9}{6}\]
\[ \therefore y = \frac{3}{2}\]
\[\therefore x^2 + y^2 + z^2 = x^2 + \left( y - 3 \right)^2 + z^2 \]
\[ \Rightarrow y^2 = y^2 - 6y + 9\]
\[ \Rightarrow 6y = 9\]
\[ \Rightarrow y = \frac{9}{6}\]
\[ \therefore y = \frac{3}{2}\]
Similarly, we also have:
OP = CP
\[\Rightarrow O P^2 = C P^2\]
\[\Rightarrow x^2 + y^2 + z^2 = x^2 + y^2 + \left( z - 8 \right)^2 \]
\[ \Rightarrow z^2 = z^2 - 16z + 64\]
\[ \Rightarrow 16z = 64\]
\[ \Rightarrow z = \frac{64}{16}\]
\[ \therefore z = 4\]
Thus, the required point is P \[\left( 1, \frac{3}{2}, 4 \right)\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads