Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the coordinates of the centre of the circle passing through the points (0, 0), (–2, 1) and (–3, 2). Also, find its radius.
Advertisement Remove all ads
Solution
Let P (x, y) be the centre of the circle passing through the points O(0, 0), A(–2,1) and B(–3,2).
Then, OP = AP = BP
Now,
`OP = AP ⇒ OP^2 = AP^2`
`⇒ x^2 + y^2 = (x + 2)^2 + (y – 1)^2`
`⇒ x^2 + y^2 = x^2 + y^2 + 4x – 2y + 5`
⇒ 4x – 2y + 5 = 0 ….(1)
and, OP = BP ⇒ OP2 = BP2
`⇒ x^2 + y^2 = (x + 3)^2 + (y – 2)^2`
`⇒ x^2 + y^2 = x^2 + y^2 + 6x – 4y + 13`
⇒ 6x – 4y + 13 = 0 ….(2)
On solving equations (1) and (2), we get
`x = \frac { 3 }{ 2 } and y = \frac { 11 }{ 2 }`
Thus, the coordinates of the centre are `( \frac{3}{2},\frac{11}{2})`
Now, `\text{}Radius=OP=sqrt(x^{2}+y^{2})=\sqrt{\frac{9}{4}+\frac{121}{4}}`
`=\frac{1}{2}\sqrt{130}`
Concept: Distance Formula
Is there an error in this question or solution?