Advertisement Remove all ads

Find the coordinates of the centre of the circle passing through the points (0, 0), (–2, 1) and (–3, 2). Also, find its radius. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the coordinates of the centre of the circle passing through the points (0, 0), (–2, 1) and (–3, 2). Also, find its radius.

Advertisement Remove all ads

Solution

Let P (x, y) be the centre of the circle passing through the points O(0, 0), A(–2,1) and B(–3,2).

Then, OP = AP = BP

 

Now,

`OP = AP ⇒ OP^2 = AP^2`

`⇒ x^2 + y^2 = (x + 2)^2 + (y – 1)^2`

`⇒ x^2 + y^2 = x^2 + y^2 + 4x – 2y + 5`

⇒ 4x – 2y + 5 = 0 ….(1)

and, OP = BP ⇒ OP2 = BP2

`⇒ x^2 + y^2 = (x + 3)^2 + (y – 2)^2`

`⇒ x^2 + y^2 = x^2 + y^2 + 6x – 4y + 13`

⇒ 6x – 4y + 13 = 0 ….(2)

On solving equations (1) and (2), we get

`x = \frac { 3 }{ 2 } and y = \frac { 11 }{ 2 }`

Thus, the coordinates of the centre are `( \frac{3}{2},\frac{11}{2})`

Now, `\text{}Radius=OP=sqrt(x^{2}+y^{2})=\sqrt{\frac{9}{4}+\frac{121}{4}}`

`=\frac{1}{2}\sqrt{130}`

Concept: Distance Formula
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×