Find the Centre and Radius of the Circle X2 + Y2 – 8x + 10y – 12 = 0 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find the centre and radius of the circle x2 + y2 – 8x + 10y – 12 = 0

Advertisement Remove all ads

Solution

The equation of the given circle is x2 + y2 – 8x + 10y – 12 = 0.

x2 + y2 – 8x + 10y – 12 = 0

⇒ (x2 – 8x) + (y+ 10y) = 12

⇒ {x2 – 2(x)(4) + 42} + {y+ 2(y)(5) + 52}– 16 – 25 = 12

⇒ (x – 4)2 + (y + 5)2 = 53

`=>(x - 4)^2 + {y-(-5)}^2 = (sqrt53)^2`which is of the form (x – h)2 + (y – k)2 = r2, where h = 4, k = –5, and r = `sqrt53`

Thus, the centre of the given circle is (4, –5), while its radius is `sqrt53`

Concept: Concept of Circle
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise 11.1 [Page 241]

APPEARS IN

NCERT Class 11 Mathematics
Chapter 11 Conic Sections
Exercise 11.1 | Q 8 | Page 241

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×