Advertisement Remove all ads

Find the Centre of the Circle Passing Through (5, -8), (2, -9) and (2, 1). - Mathematics

Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).

Advertisement Remove all ads

Solution

The distance d between two points `(x_1,y_1)and `(x_2,y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

The centre of a circle is at equal distance from all the points on its circumference.

Here it is given that the circle passes through the points A(5,8), B(2,9) and C(2,1).

Let the centre of the circle be represented by the point O(x, y).

So we have AO =  BO = CO

`AO = sqrt((5 - x)^2 + (-8 - y)^2)`

`BO = sqrt((2 - x)^2 + (-9-y)^2)`

`CO = sqrt((2 - x)^2 + (1 - y)^2)`

Equating the first pair of these equations we have,

AO = BO

`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9 - y)^2)`

Squaring on both sides of the equation we have,

`(5 -x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y` 

6x + 2y = 4

3x + y = 2

Equating another pair of the equations we have,

AO =BO

`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9-y)^2)`

Squaring on both sides of the equation we have,

`(5 - x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y`

6x + 2y = 4

3x + y = 2

Equating another pair of the equations we have,

AO = CO

`sqrt((5 -x)^2 + (-8 - y)^2) = sqrt((2 -x)^2 + (1 - y)^2)`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 -4x + 1 + y^2 - 2y`

6x - 8y = 84

x - 3y = 14

Now we have two equations for ‘x’ and ‘y’, which are

3x + y = 2

x - 3y = 14

From the second equation we have y = -3x + 2. Substituting this value of ‘y’ in the first equation we have,

x - 3(-3x + 2) = 14

x + 9x - 6 = 14

10x = 20

x = 2

Therefore the value of ‘y’ is,

y = -3x + 2

= -3(2) + 2

y = -4

Hence the co-ordinates of the centre of the circle are (2, -4)

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 6 Co-Ordinate Geometry
Exercise 6.2 | Q 54 | Page 17
Advertisement Remove all ads

Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×