# Find the capacity in litres of a conical vessel with height 12 cm, slant height 13 cm - Mathematics

Find the capacity in litres of a conical vessel with height 12 cm, slant height 13 cm

["Assume "pi=22/7]

#### Solution 1

Height (h) of cone = 12 cm

Slant height (l) of cone = 13 cm

"Radius (r) of cone "=sqrt(l^2-h^2)

=(sqrt(13^2-12^2))cm

= 5 cm

"Volume of cone "=1/3pir^2h

=[1/3xx22/7xx(5)^2xx12]cm^3

=(4xx22/7xx25)cm^3

=(2200/7)cm^3

Therefore, capacity of the conical vessel

=(2200/7000)litres"               "("1 litre "=1000cm^3)

=11/35 "litres"

#### Solution 2

In a cone, the vertical height ‘h’ is given as 12 cm and the slant height ‘l’ is given as 13 cm.

To find the base radius ‘r’ we use the relation between rl and h.

We know that in a cone

l^2 = r^2 +h^2

r^2 =l^2 - h^2

r = sqrt(l^2 - h^2)

= sqrt(13^2 - 12^2)

= sqrt(169 - 144)

= sqrt(25)

= 5

Therefore the base radius is, r = 5 cm.

Substituting the values of r = 5 cm and h = 12 cm in the above equation and using pi = 22/7

Volume = ((22)(5)(5)(12))/((3)(7))

= 314.28

Hence the volume of the given cone with the specified dimensions is   314.28  cm^3

Concept: Volume of a Right Circular Cone
Is there an error in this question or solution?

#### APPEARS IN

NCERT Class 9 Maths
Chapter 13 Surface Area and Volumes
Exercise 13.7 | Q 2.2 | Page 233
RD Sharma Mathematics for Class 9
Chapter 20 Surface Areas and Volume of A Right Circular Cone
Exercise 20.2 | Q 2.2 | Page 20