Advertisement Remove all ads

Find the capacity in litres of a conical vessel with height 12 cm, slant height 13 cm - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Answer in Brief

Find the capacity in litres of a conical vessel with height 12 cm, slant height 13 cm

`["Assume "pi=22/7]`

 

Advertisement Remove all ads

Solution 1

 Height (h) of cone = 12 cm

Slant height (l) of cone = 13 cm

`"Radius (r) of cone "=sqrt(l^2-h^2)`

`=(sqrt(13^2-12^2))cm`

= 5 cm

`"Volume of cone "=1/3pir^2h`

`=[1/3xx22/7xx(5)^2xx12]cm^3`

`=(4xx22/7xx25)cm^3`

`=(2200/7)cm^3`

Therefore, capacity of the conical vessel

`=(2200/7000)litres"               "("1 litre "=1000cm^3)`

`=11/35 "litres"`

 

Solution 2

In a cone, the vertical height ‘h’ is given as 12 cm and the slant height ‘l’ is given as 13 cm.

To find the base radius ‘r’ we use the relation between rl and h.

We know that in a cone

`l^2 = r^2 +h^2`

`r^2 =l^2 - h^2`

`r = sqrt(l^2 - h^2)`

= `sqrt(13^2 - 12^2)`

=` sqrt(169 - 144)`

= `sqrt(25)`

= 5

Therefore the base radius is, r = 5 cm.

Substituting the values of r = 5 cm and h = 12 cm in the above equation and using `pi = 22/7`

Volume = `((22)(5)(5)(12))/((3)(7))`

= 314.28

Hence the volume of the given cone with the specified dimensions is  ` 314.28  cm^3`

Concept: Volume of a Right Circular Cone
  Is there an error in this question or solution?

APPEARS IN

NCERT Class 9 Maths
Chapter 13 Surface Area and Volumes
Exercise 13.7 | Q 2.2 | Page 233
RD Sharma Mathematics for Class 9
Chapter 20 Surface Areas and Volume of A Right Circular Cone
Exercise 20.2 | Q 2.2 | Page 20

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×