###### Advertisements

###### Advertisements

**Find the area of a triangle with vertices at the point given in the following:**

(1, 0), (6, 0), (4, 3)

###### Advertisements

#### Solution

Area of the triangle passing through the vertices `(x_1,y_1),(x_2,y_2),(x_3,y_3)`

`Delta = 1/2 abs ((x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1))`

Area of the required triangle

`Delta = 1/2 abs((1,0,1),(6,0,1),(4,3,1))`

`=1/2 [1 (0 - 3) - 0 (6 - 4) + 1 (18 - 0)] `

`= 1/2 [-3 + 18]`

`= 15/2`

= 7.5 sq. units.

#### APPEARS IN

#### RELATED QUESTIONS

Prove that the area of a triangle with vertices (*t*, *t* −2), (*t* + 2, *t *+ 2) and (*t *+ 3, *t*) is independent of *t*.

Prove that the points (a, b + c), (b, c + a) and (c, a + b) are collinear

Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0, -1), (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle

**Find the area of a triangle with vertices at the point given in the following:**

(2, 7), (1, 1), (10, 8)

**Find the area of a triangle with vertices at the point given in the following:**

(−2, −3), (3, 2), (−1, −8)

Find values of k if area of triangle is 4 square units and vertices are (k, 0), (4, 0), (0, 2)

Find values of k if area of triangle is 4 square units and vertices are (−2, 0), (0, 4), (0, k)

Find equation of line joining (3, 1) and (9, 3) using determinant.

If area of triangle is 35 square units with vertices (2, −6), (5, 4), and (k, 4), then k is ______.

**Find the area of the following triangle:**

**Find the area of the following triangle:**

Show that the following sets of points are collinear.

(2, 5), (4, 6) and (8, 8)

Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200 cm ?

Find the area of a triangle whose sides are 9 cm, 12 cm and 15 cm ?

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42cm ?

In a ΔABC, AB = 15 cm, BC = 13 cm and AC = 14 cm. Find the area of ΔABC and hence its altitude on AC ?

The perimeter of a triangular field is 540 m and its sides are in the ratio 25 : 17 : 12. Find the area of the triangle ?

Find the centroid of ΔABC whose vertices are A(-1, 0) B(5, -2) and C(8,2)

Find the area of ΔABC whose vertices are:

A(-5,7) , B (-4,-5) and C (4,5)

If the points P(-3, 9), Q(a, b) and R(4, -5) are collinear and a+b=1, find the value of a and b.

Find the value of *x* for which the points (*x*, −1), (2, 1) and (4, 5) are collinear ?

Using determinants, find the values of k, if the area of triangle with vertices (–2, 0), (0, 4) and (0, k) is 4 square units.

In ☐ ABCD, l(AB) = 13 cm, l(DC) = 9 cm, l(AD) = 8 cm, find the area of ☐ ABCD.

Using integration, find the area of the triangle whose vertices are (2, 3), (3, 5) and (4, 4).

Using integration, find the area of triangle ABC, whose vertices are A(2, 5), B(4, 7) and C(6, 2).

What is the area of a triangle with base 4.8 cm and height 3.6 cm?

Find BC, if the area of the triangle ABC is 36 cm^{2} and the height AD is 3 cm.

If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

20 cm | 40 cm | ? |

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

5 feet | ? | 20 sq.feet |

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

? | 12 m | 24 sq.m |

A field is in the shape of a right angled triangle whose base is 25 m and height 20 m. Find the cost of levelling the field at the rate of ₹ 45 per sq.m^{2}

If Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ_{1} = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, then prove that ∆ + ∆_{1} = 0.

In a triangle ABC, if `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, then prove that ∆ABC is an isoceles triangle.

Let ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`and ∆_{1} = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, then ______.

If A, B, C are the angles of a triangle, then ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______.

If the co-ordinates of the vertices of an equilateral triangle with sides of length ‘a’ are (x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}), then `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`

Show that the ∆ABC is an isosceles triangle if the determinant

Δ = `[(1, 1, 1),(1 + cos"A", 1 + cos"B", 1 + cos"C"),(cos^2"A" + cos"A", cos^2"B" + cos"B", cos^2"C" + cos"C")]` = 0

If the points (a_{1}, b_{1}), (a_{2}, b_{2}) and(a_{1} + a_{2}, b_{1} + b_{2}) are collinear, then ____________.

Find the area of the triangle whose vertices are (-2, 6), (3, -6), and (1, 5).

Let `Delta = abs (("x", "y", "z"),("x"^2, "y"^2, "z"^2),("x"^3, "y"^3, "z"^3)),` then the value of `Delta` is ____________.

The area of the triangle whose vertices are A(1, 2), B(-2, 3) and C(-3, -4) is ______.

A(6, 1), B(8, 2) and C(9, 4) are three vertices of a parallelogram ABCD. If E is the midpoint of DC, find the area of ∆ADE.

The area of a triangle with base 4 cm and height 6 cm is 24 cm^{2}.

The area of ∆ABC is 8 cm^{2} in which AB = AC = 4 cm and ∠A = 90º.

Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m^{2}.

A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

The dimensions of a rectangle ABCD are 51 cm × 25 cm. A trapezium PQCD with its parallel sides QC and PD in the ratio 9:8, is cut off from the rectangle as shown in the figure. If the area of the trapezium PQCD is `5/6` h part of the area of the rectangle, find the lengths QC and PD.

Area of triangle MNO in the figure is ______.

Ratio of areas of ∆MNO, ∆MOP and ∆MPQ in the given figure is ______.

If area of a triangular piece of cardboard is 90 cm^{2}, then the length of altitude corresponding to 20 cm long base is ______ cm.

Triangles having the same base have equal area.

Ratio of the area of ∆WXY to the area of ∆WZY is 3:4 in the given figure. If the area of ∆WXZ is 56 cm^{2} and WY = 8 cm, find the lengths of XY and YZ.

Area of a triangle PQR right-angled at Q is 60 cm^{2} in the figure. If the smallest side is 8 cm long, find the length of the other two sides.

In the given figure, triangle AEC is right-angled at E, B is a point on EC, BD is the altitude of triangle ABC, AC = 25 cm, BC = 7 cm and AE = 15 cm. Find the area of triangle ABC and the length of DB.

Let a vector `αhati + βhatj` be obtained by rotating the vector `sqrt(3)hati + hatj` by an angle 45° about the origin in counter-clockwise direction in the first quadrant. Then the area of triangle having vertices (α, β), (0, β) and (0, 0) is equal to ______.

If (a, b), (c, d) and (e, f) are the vertices of ΔABC and Δ denotes the area of ΔABC, then `|(a, c, e),(b, d, f),(1, 1, 1)|^2` is equal to ______.

Using determinants, find the area of ΔPQR with vertices P(3, 1), Q(9, 3) and R(5, 7). Also, find the equation of line PQ using determinants.