Advertisement Remove all ads

Find the Area of the Triangle Formed by Joining the Midpoints of the Sides of the Triangle Whose Vertices Are A(2,1) B(4,3) and C(2,5) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(2,1) B(4,3) and C(2,5)

Advertisement Remove all ads

Solution

The verticals of the triangle are A(2,1) , B (4,3) and C(2,5).

`"Coordinates of midpoint of"  AB = P (x_1,y_1)= ((2+4)/2,(1+3)/2) = (3,2)`

`"Coordinates of midpoint of " BC = Q(x_2,y_2) = ((4+2)/2,(3+5)/2) = (3,4)`

`"Coordinates of midpoint of"  AC =R (x_3,y_3) = ((2+2)/2, (1+5)/2) = (2,3)`

Now, 

`"Area of " ΔPQR =1/2 [x_2(y_2-y_3) +x_2 (y_3-y_1) +x_3 (y_1-y_2)]`

`=1/2[3(4-3)+3(3-2)+2(2-4)]`

`=1/2[3+3-4]=1` sq. unit

Hence, the area of the quadrilateral triangle is 1 sq. unit.

Concept: Coordinate Geometry
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 16 Coordinate Geomentry
Q 6

Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×